APPLIED PHYSICS (B)
cod. 15529

Academic year 2010/11
1° year of course - Second semester
Professor
Academic discipline
Fisica applicata (a beni culturali, ambientali, biologia e medicina) (FIS/07)
Field
Diagnostica per immagini e radioterapia
Type of training activity
Characterising
40 hours
of face-to-face activities
5 credits
hub: -
course unit
in - - -

Integrated course unit module: GENERAL PHYSICS

Learning objectives

The course has been designed to provide an introductory basis for other major degree fields including Chemistry, Biology, Physiology, Biochemistry, etc., as well as the physical phenomenology on which they are based or which they make frequent use of. The course will also provide the conceptual basis for understanding a number of major technologies that with increasing frequency are used by doctors and technologists such as: microscopes, transducers for ultrasound equipment, laser systems, radiology equipment and NMR, radiation detectors, etc.

Prerequisites

Physics I

Course unit content

Waves, Optics, Electrostatics, Electricity, Magnetism and Radiations.

Vibrations: harmonic, damped, forced motions, and resonance. Characteristics of waves, the wave equation, superposition and interference of waves, stationary waves. Sound waves, the ear and hearing, interference of sound, beats. Ultrasound. Doppler effect. The Doppler echo in diagnostics: an application of the Doppler effect.

Light. Geometrical optics: refraction, reflection, Snell's law, total reflection. Lenses and Dioptres. Creation of an image with a thin lens. The human eye, basic optical instruments . Interference of light. Diffraction of light.

Electrostatics: electric charge. Coulomb's law. Electric field Electric potential Electric current: definition of resistance. DC (direct current) circuits. Ohm's laws. Serial and parallel resistors. Kirchhoff's law. Resistance, capacitance and inductance in an AC (alternating current) circuit. Gauss' theorem. Flux of an electric field. Electrocardiogram. Series and parallel capacitance. Dielectrics.

Magnetic Field. Electromagnetic field. Motion of charges in a magnetic field. Biot-Savart law and Ampere's law. Force generated between current-carrying conductors. Magnetic Induction: Faraday's law and Lenz's law.

The atom. Radioactivity, law of radioactive decay, half-life. Electromagnetic spectrum. Photons as particles and waves. Production and applications of X rays. Principles of Radioptrotection.

Full programme

- - -

Bibliography

1. Lecture notes.

2. Giambattista, McCarthy Richardson, Richardson:
Fisica Generale,
Ed. McGraw-Hill (Milano).

3. Scannicchio:
Fisica Biomedica,
Ed. EdiSES (Napoli).

4. Resources and links from the Internet

Teaching methods

classroom lectures

Assessment methods and criteria

written examination

Other information

- - -