Learning outcomes of the course unit
Knowledge of mathematical methods and techniques.
Tools for quantitative investigation and rigorous solution of practical problems.
Course contents summary
Functions of a complex variable, analytic functions, Cauchy theorem. Laplace transform and application to initial value problems. Dirac’s delta distribution. Fourier transform and Fourier integral, with applications. Finite Fourier transform.
Recommended readings
M.Bramanti, C.D.Pagani, S.Salsa: Matematica, Zanichelli, Bologna, 2004.
M.R.Spiegel, Schaum's outline series, McGraw-Hill, New York (Complex Variables, Laplace Transforms, Fourier Analysis).
G.Spiga, Problemi Matematici della Fisica e dell'Ingegneria, Pitagora, Bologna, 1985.
NAME OF LECTURER
SPIGA Giampiero
ACADEMIC YEAR: 2007/2008
YEAR OF STUDY: 1
SEMESTER: First semester
NUMBER OF CREDITS: 3
UNIT COORDINATOR: SPIGA Giampiero
CONTACT HOURS: 24