CHEMISTRY AND BIOCHEMISTRY
CHEMISTRY AND BIOCHEMISTRY (2S-A) (2 credits) | CHEMISTRY AND BIOCHEMISTRY (2S) (3 credits) |
Learning outcomes of the course unit
The general objective of the course is to provide the students with:
- the fundamental concepts of chemistry to better understand the properties of matter, starting from the structure of atoms and molecules;
- useful basis for understanding, at a molecular level, the complex chemical processes inside the cell and in the metabolic pathways.
In particular, the aim is to bring the students to the knowing and understanding of:
- the principles that regulate the compounds reactivity;
- bonds breaking or formation and the related energy exchange;
- the electron transfer;
- the kinetics of chemical reactions and the dynamic chemical equilibrium;
- the structure and properties of inorganic and organic compounds as well as of biological macromolecules;
- the properties of solutions and the equilibria in aqueous solutions;
- the properties of acids, bases, salts and buffers.
The chemistry of organic compounds and of biological macromolecules is described in a way to better undertand the physiological and biochemical processes.
To be able to discuss the mechanisms of delivery and expression of the genetic information at molecular level. To be able to describe the characteristics, the function and the metabolic role of the major molecular constituents of the cell (proteins, nucleic acids, enzymes and co-enzymes, vitamins), and the mechanisms of production of the metabolic energy. To show knowledge and understanding of the major metabolic pathways, the molecular mechanisms of regulation, the general principles of metabolic energy homeostasis and cell plasticity. To be able to resolve problems concerning the metabolic use of major food constituent in tissues. To be able to integrate carbohydrate, lipid and protein metabolism in a healthy individual from a global and holistic point of view. To show knowledge of bone tissue.
Prerequisites
It is mandatory to pass the exam of Histology before being allowed to take the exam of Chemistry and Biochemistry.
Course contents summary
WITHIN THE INTEGRATED COURSE OF BIOCHEMISTRY, EACH PROFESSOR TAKE CARE OF HIS SPECIFIC PART OF THE FOLLOWING PROGRAM, WHICH CORRESPONDS TO A FRACTION OF THE LEARNING CREDITS:
Introduction and atomic structure
Properties of matter. Elements and compounds. Sub-atomic particles. Atomic number, mass number, isotopes. Atomic and molecular weight, gram atom, gram molecule. Atomic structure; atomic orbitals and quantum numbers. Electronic configuration of the elements.
Periodic trends in the chemical properties of the elements
Periodic table. Periodic properties of the elements: atomic size, ionization energy, electron affinity, electronegativity. Electronic structure and chemical properties.
Chemical bonding
Ionic bond; covalent bond (pure, polar, dative) and molecular orbitals. Intermolecular bonding: dipole-dipole interactions, hydrogen bonding, van der Waals forces.
Inorganic chemical compounds
Hydrurs, binary acids, oxides and anhydrides, peroxides, hydroxides, acids, neutral and acidic salts: formation reactions, reaction balancing, nomenclature, structural formulas.
Chemical kinetics
Rates of chemical reactions, rate laws. The factors that affect chemical reaction rate: chemical nature of the reactants, concentration of the reactants (order of a reaction), temperature and catalysts. Molecular collision theory and transition state theory.
Chemical equilibria
Chemical equilibrium is a dynamic process. The general expression of the equilibrium constant. Factors that affect the chemical equilibrium: variations of concentration, volume, pressure, temperature. Le Chatelier’s principle.
Chemical thermodynamics
First principle of thermodynamics, the concept of enthalpy. Second principle of thermodynamics, the concept of entropy. Third law of thermodynamics. Free energy and spontaneity of chemical reactions; free energy and equilibrium constant.
Solutions
Concentrations units: percent fraction w/w and w/v, molarity, molality, normality.
Colligative properties of solutions: boiling point elevation, freezing point depression; origin and significance of the osmotic pressure, van’t Hoff factor and osmolarity.
Acids and bases: Arrhenius theory, Bronsted and Lowry theory, Lewis theory. Acid-base equilibria. Strong acids and bases, weak acids and bases.
Water ionization. Concept of pH. Calculating the pH of acid and base (strong and weak) solutions. Hydrolysis of salts in water. Buffer solutions: properties and pH calculation.
Acid-base titrations.
Stoichiometry
Stoichiometric calculations. Balancing chemical equations.
Oxidation state and oxidation number; balancing ox-red reactions.
Chemistry exercises: concentrations of solutions, pH calculation of aqueous solutions containing different compounds, colligative properties.
Introduction to organic chemistry
Hybrid orbitals of carbon. Molecular and structural formulas. Types of reaction: substitution, addition, elimination. Electrophiles and nucleophiles reagents. Functional groups.
Hydrocarbons
Hydrocarbons classification. Alkanes: nomenclature, physical properties and characteristic reactions. Structural isomerism. Cycloalkanes: structure and nomenclature. Alkenes and alkynes: nomenclature, physical properties and characteristic reactions.
Benzene: concept of aromaticity and properties. Benzene reactivity and most important substitution reactions. Substituents effect on reactivity and orientation.
Alcohols and phenols
Structure, classification and nomenclature. Physical and chemical properties; the acid-base behaviour. Characteristic reactions. Formation of ethers.
Aldehydes and ketones
Structure and nomenclature. Physical properties. Characteristic reactions and their mechanism: addition of water, alcohols, amine; aldol condensation.
Carboxylic acids and related carbonyl derivatives
Carboxylic acids: s
Recommended readings
Baynes JW, Dominiczak MH: Biochimica per le discipline biomediche, seconda edizione, Casa Editrice Ambrosiana, Milano, 2006.
Bhagavan NV: Medical Biochemistry, fourth edition, Harcourt/Academic Press, Burlington, 2002.
Caldarera CM: Biochimica Sistematica Umana, seconda edizione, CLUEB, Bologna, 2003.
Devlin TM: Textbook of Biochemistry with clinical correlations, fifth edition, Wiley-Liss, New York, 2002.
Garrett RH, Grisham CM: Principi di Biochimica Piccin, Padova, 2004.
Mathews CK, van Holde KE, Ahern KG: Biochimica, terza edizione, Casa Editrice Ambrosiana, Milano, 2004.
Murray RK, Granner DK, Mayes PA, Rodwell VW; Harper Biochimica, 25a edizione, McGraw-Hill Libri Italia srl, Milano, 2000.
Nelson DL, Cox MM: I principi di Biochimica, terza edizione, Zanichelli, Bologna, 2002.
Siliprandi N, Tettamanti G: Biochimica Medica Piccin. Padova, 2005.
Voet D, Voet JG: Biochemistry, 3rd edition, John Wiley & Sons, USA, 2004.
Mario Anastasia
Chimica di base per le scienze della vita
Antonio Delfino Editore (2 volumi)
A. Albertini, M. Avitabile, U. Benatti, V. Boido, F. Guerrieri, G. Liut, L. Masotti, A. Spisni
Chimica Generale
Monduzzi Editore
Harold Hart, Leslie E. Craine, David. J. Hart
Chimica Organica
Zanichelli Editore
Teaching methods
Teaching activity: frontal lessons, interactive activity for small groups, seminars, learning by solving problems
Kind of exam: written + oral
Teachers:
Prof. Amos Casti (Coordinator)
Prof. Saverio Bettuzzi
Prof. Lorella Franzoni