PHYSICS II (ELECTROMAGNETISM OPTICS)
Learning outcomes of the course unit
The most specific contents of the course are essentially intended to cover the basic aspects of the Physics regarding the electric, magnetic, and radiative properties, with a double purpose:
1) to give the necessary elements propaedeutic to other disciplines of this degree which have a direct physical foundation or should make frequent implicit use of Physics concepts (Chemistry, Biology, Biochemistry, Physiology, Instrumentation, Radiological instruments, etc.); 2) to lead the student to reach a deeper confidence about phenomenologies of daily use, but not always clear, as: light and its properties, also with reference to the most usual optical devices, and eye physical defects; electric and magnetic forces; laws governing potentials and currents; the basic electrical and magnetical ingredients; the substantial differences between continuous and alternate situations; features of the electromagnetic field and its propagation; atomic and nuclear structures with particular regard to X, alpha, beta and gamma radiative emissions; perturbation induced by radiation in the matter; revelation and control methods.
Course contents summary
Electricity and Magnetism:
Electric charge and Coulomb¿s law ¿ Dielectric constant ¿ The electric field ¿ Electric work and electrostatic potential - Volt ¿Dipolar field and potential ¿The electric double layer - Eletctrocardiogram (dipolar aspects) ¿ Gauss¿s theorem e its basic applications ¿ Faraday shield ¿ Electrostatic induction and dielectric polarization ¿ Capacitance and capacitors ¿ Capacitors combined in series and parallel ¿ Current intensity and current density - Ohm¿s law and resistance - Resistors combined in series e parallel ¿ Electromotive force ¿ Kirchhoff¿s laws ¿ Thermic effect of a current ¿ Electric conduction in liquids ¿ Passage of the current in the human body ¿Electronic structure of insulators, conductors and semiconductors (short account) ¿ Magnetic field and forces on currents and magnets - Biot/Savart law ¿ Magnetic permeability ¿ Circulation of B and Ampère¿s theorem - Solenoid ¿ Electromagnetic induction and Faraday¿s and Lenz¿s laws ¿ The autoinduction coefficient L ¿Alternate tension and current ¿ Impedance of a circuit and dissipated AC power ¿ Electromagnetic waves ¿ Photoelectric effect and photons ¿ Thermoionic emission
Optics:
Reflection and refraction laws and dispersion of the light ¿ Total reflection and optical fiber ¿ The endoscope (short account ) - Elements of spectral analysis ¿ Optical systems, focal points, and dioptric power ¿ Thin lenses and mirrors, and graphic construction of the images - Compound microscope ¿ Resolution limit ¿ Optical aberrations ¿ The eye as a dioptric system ¿ Common dioptric defects of the eye and correction by thin lenses ¿ Wave properties of the light ¿ Light diffraction and Huyghens' principle - Diffraction grating - Polarization of the light and polarimetry ¿ Laser light: production, properties and applications in Medicine ¿ The electronic microscope (short account).
Atom, Nucleus, and Radiations:
Atomic structure - Bohr and Bohr/Sommerfeld models of the atom ¿ Emission and absorption of photons, and luminescence ¿ X-rays: production and properties ¿ Mechanisms of X-ray absorption in the matter ¿ Radiological imaging ¿ Nucleus structure and isotopes ¿ Natural radioactivity: alpha, beta, and gamma radiation and absorption properties ¿ Radioactive decay and mean life.
Recommended readings
Suggested textbooks:
J. W. Kane ¿ M. M. Sternheim: Fisica Biomedica, ed. E.M.S.I. (Roma).
D.Halliday-R.Resnick-J.Walker: Fondamenti di Fisica, Casa Ed. Ambrosiana (Milano).
P.A.Tipler: Invito alla Fisica, ed. Zanichelli (Bologna).
F. Borsa ¿ D. S. Scannicchio: Fisica, ed. UNICOPLI (Milano).
D. M. Burns ¿ G. C. MacDonald: Fisica, ed. Zanichelli (Bologna).
M. Celasco: Lineamenti di Fisica Medica, ed. E.C.I.G. (Genova).
N. Molho: Fondamenti di Fisica, ed. Monduzzi (Bologna).