GENERAL BIOLOGY AND GENETICS
Learning outcomes of the course unit
The aim of this course is to give the student the ability to:
- acquire the basic principles of biological sciences and methods.
- learn and apply an evolutionary logic and perspective to interpreting the biological phenomena at different levels of organization (molecular, cellular, organismic)
- understand the correlation between structure and function at the different organizational levels.
- Acquire a biological perspective to the analysis of human behavior
- Appraise the implication of human evolution for the bio-medical research
Course contents summary
1. The Nature of science and biology: methods and organizing concepts. Diversity and unity of Life on Earth, emergent properties, correlation between structure and function, the Scientific method. The unifying principle of biology: The Theory of Evolution.
2. The chemical context of life: water and the structure and function of macromolecules. Origins and evolution of life on Earth.
3. Cell Biology. Procaryotic ed Eucaryotic cells. Membrane structure and function. Cell metabolism and energy trasformations. The reproduction of cells and cell cycle (binary scission and mitosis).
4. Sexual Riproduction. Meiosis and sexual life cycles. Oogenesis, Spermatogenesis and Hormonal regulation of reproduction in mammals.
. – The molecular basis of inheritance: DNA structure and replication. From gene to protein: Transcription, Translation and the genetic code. Point mutations. Regulation of gene expression in Procaryotic and eucaryotic cells. The Genome project.
6. Evolution. The Darwinian theory. Evidence from many fields validates the evolution theory. The modern evolutionary synthesis. The Hardy-Weinberg Theorem. Microevolution and its caueses. The origin of species. Macroevolution and Phylogeny.
7. Human Evolution. Vertebrate diversity and phylogeny: an overview. Mammalian characteristics and Evolution of Primates. Early Anthropoids, Australopitecines and the genus Homo. Evolution of brain and language.
Recommended readings
Solomon et al. Biology. THomson