REMOTE SENSING I
cod. 18382

Academic year 2008/09
3° year of course - First semester
Professor
Academic discipline
Geofisica della terra solida (GEO/10)
Field
Ambito mineralogico-petrografico e geochimico-geofisico
Type of training activity
Characterising
44 hours
of face-to-face activities
4 credits
hub:
course unit
in - - -

Learning objectives

<br />To provide the  theoreticalbasisof the   spectroscopic  remote sensing   forthe lithological analysis  and  simplemethods   of  data   analysis     and classification

Prerequisites

<br />Basic  principles on electromagnetic waves, knowledge of mineralogy, petrography andgeology

Course unit content

<br /> <br />1 – Introduction  to the concepts and methods of the remote sensing<br /> <br />2 - Physical principles<br />2.1 – The  electromagnetic radiation and the matter: nature of the radiation;electromagnetic radiation and matter.<br />2.2 –Sources of the electromagnetic radiation for remote sensing: sun, reflecting  natural surfaces.<br />2.3 –Measurement of the radiation: radiometric quantities.<br />2.4 - Interaction processes  between electromagnetic  radiation  and  matter:<br />at the  interface: smooth plane surface (reflectance, refraction,diffraction: opticalgeometry);irregular homogeneous surface: Lambertian  surface;Fresnel low:complex refractive index; atomic and molecular interactionprocesses: electronic, vibrational, rotalional processes.<br /> <br />3 –Interaction processes used in remote sensing<br />3.1–Interactionin the atmosphere: composition; scattering and  absorptions;energy  transfer; atmospheric models: examples.<br />3.2 –Interactions in the terrain (soils, rocks, water, other materials)<br />VIS-NIR(400-2500nm):spectral reflectance; laboratory spectra: electronictransitions in transition elements; other electronic processes;vibrationalprocesses;scattering in a particulate material;<br />Examples of spectra of minerals, rocks, sediments measured in laboratory, in the field,  from remote.<br />Exercises:analysis of reflectance spectra of minerals and rocks.<br /> <br />4 – The  systems for remote sensing data acquisition<br />4.1–Spectroradiometersfor laboratory, in-situ, from remote analyses;transfer  functionand the concept of radiometric resolution.<br />4.2 –Imaging spectrometers.<br />4.2.1–General:types of spectroradiometers; spectral resolution;radiometric  resolution and distortion; acquisitiongeometry andgeometric distortions.<br />4.2.2–Remotesensing systems from satellites: orbit characteristics;spectraland  radiometric characteristics and distortions;geometricdistorsions.<br />4.2.3–Basicprocessing methods of remote multispectral data:datacube;transformation to reflectance; visualization; simple methodsfordata analysis;geometric and geographic corrections.<br /> <br />5 –Laboratory of data analysis and classification <br />Examplesof analysis and interpretation of multispectral and multitemporaldata:criteria  and examples of discrimination and interpretationoflithotypes and of recent  depositional systems<br />Processing ofdigital data: analysis and interpretation of multispectraldata:atmospheric  corrections; visualization (slicing,bandcomposition); visual amelioration (stretching,decorrelationstretching, filtering); spectral analysis (RSspectra  andlaboratory spectra; radiance transformation toreflectance, algebricand  statistical operations, etc); thematicclassifications.

Full programme

- - -

Bibliography

<br />B.S. Siegaland A.R. Gillespie – Remote Sensing in Geology, John Wiley and Sons, New York, 1980<br />T.M. Lillesand and R.W. Kiefer, Remote  sensing and image interpretation, John Wiley & Sons, New York, 1999<br /><br />Coursenotes

Teaching methods

<br />Lectures:<br />Orallectures and exercises<br />Laboratorywith written final report<br /> <br />Examinations:<br />Oralexamination and discussion about the written report

Assessment methods and criteria

- - -

Other information

- - -