# PHYSICS

## Learning outcomes of the course unit

1. Knowledge and understanding skills

Understand the basic aspects of classical physics and the physical laws ruling it.

Recognize and exemplify the fundamental laws of Classical Physics, Dynamics, Thermodynamics and Electromagnetism, with particular attention to the principles of conservation.

Explain the meaning of the introduced physical quantities

Remember the fundamental units of measurement

Compare physical systems by detecting analogies and differences

Deferring from direct observation of a simple phenomenon the physical laws that describe it

2. applying knowledge and understanding

Apply the known physical laws to describe the system in question

Apply known physical laws to symbolically set up simple problems

Perform dimensional analysis

Apply the acquired knowledge to expose the relationship between physical quantities

Perform simple exercises with related numerical calculations

Students should be able to orient themselves in the evaluation of analogies and differences between physical systems and the understanding of physical laws. They must have acquired the ability to understand the laws of classical physics in the essential aspects, to perform simple exercises with a reasonable degree of autonomy, to statistically process and measure the results of experiments and to summarize the problems in their essential aspects.

3. Autonomy of judgment

Know how to interpret data for a problem

Know how to analyze definitions

Know how to critically evaluate the validity limits of the developed physical models

Know how to recognize the correct formulation of physical laws.

Know how to attribute a reference frame of physical laws to each phenomenon under investigation

Students at the end of the course will have to demonstrate that they have improved their critical skills and judgment formulation, in particular to interpret the data of a problem, to reflect on the phenomena that they observe, to study independently, to communicate ideas-problems-solutions So to develop those learning skills that are necessary to undertake subsequent studies in the field of biophysics or to engage in related professional activities.

4. Communicative Skills

Be able to explain the Physical Laws of Mechanics, Thermodynamics, Electromagnetism in a clear, synthetic and effective way

5. Learning Skills

Study independently

Link different topics discussed in the course and topics addressed in other subjects (Chemistry, Mathematics, Biology)

Evaluate your degree of understanding by trying to solve similar problems but not identical to those already dealt with in lesson

Read basic texts and even more advanced levels with a reasonable degree of autonomy

Know how to change your conceptual framework in the face of simple problems that you cannot immediately determine the solution

## Course contents summary

Mechanics

Fluid mechanics

Thermodynamics

Electromagnetism

The course gives, with a simplified approach, some basic concepts which are necessary to some of the following biology and chemistry courses.

## Course contents

Mechanics Physical quantities and Units. Vectors and scalars. Operations with vectors. Space-time diagram. Position, velocity, acceleration. Newton’s laws. Fundamental interactions. Work. Work-kinetic energy theorem. Potential energy. Conservation of energy. Equilibrium. Rotary motion. Kinetic energy of a rotating body. Torque. Fluid mechanics Stevino’s law. Archimede’s law. Continuity equation. Bernoulli’s theorem. Viscosity. Laminar and turbulent flow. Stoke’s law. Surface tension. Capillaries and Laplace law. Thermodynamics Temperature scales. Kinetic theory of gases. Equipartition of energy. Internal energy. Specific heat. Latent heat and phase transitions. Work and heat. First law of thermodynamics. Some selected transformations. Heat propagation. Heat engines. Reversible and irreversible transformations. Entropy. Second law of thermodynamics. Carnot’s cycle. Electromagnetism Electric charge. Insulators and conductors. Induction and polarization. Coulomb’s law. Electric field. Voltage. Capacity. Capacitors and resistors. Ohm’s and Joule’s laws. Magnetic field. Lorentz force. Ampère’s law. Faraday’s law. Generalized Ampère’s law. Electromagnetic waves. Energy associated with the electromagnetic waves. Spectrum of electromagnetic waves. Polarization. Light refraction. Light dispersion.

## Recommended readings

Principi di Fisica Serway Jewett EdiSES

Fondamenti di Fisica J.S. Walker Pearson Addison- Wesley

## Teaching methods

Teaching activities will take place with lessons, sometimes alternating with a Socratic heuristic approach. The topics discussed will be punctually accompanied by examples and simple exercises that allow the student to understand how to apply the concepts outlined.

The slides used during lessons will be uploaded to Elly before the beginning of the course.

The course slides are considered an integral part of the reference material.

It is recommended that non-attending students check the available teaching material and the instructions provided by the teacher through the Elly platform.

## Assessment methods and criteria

The summary appraisal of the learning involves a written examination, including 30 closed-ended questions, aimed at assessing the understanding and ability to apply the laws of physics. The duration of the test is 1 hour. Assigning the test score (0-30) is done by counting the exact answers.

During the course 2 partial tests are given, the passing of which allows you to have a bonus point for each test, for a maximum of 2 points, which is summed up to the score obtained in the written test.

Upon completion of the written test, the student may eventually complement the examination with an oral test to improve the score obtained.

To assist in the preparation of the written test, Elly is provided with exemplifying evidence.

Students can use scientific calculators during the test.

Scores will be published on esse3.