BIOCHEMISTRY
cod. 00061

Academic year 2018/19
2° year of course - First semester
Professor
Academic discipline
Biochimica (BIO/10)
Field
Discipline biologiche
Type of training activity
Basic
42 hours
of face-to-face activities
6 credits
hub:
course unit
in ITALIAN

Learning objectives

Biochemistry is the science dealing with the molecular basis of life. Biochemistry deals with composition, structure and function of molecules typical of living organisms and with the chemical reactions that occur in these organisms. The course aims to make students able to understand fundamental concepts regarding: the relationship between structure and function in biological macromolecules, including globular and fibrous proteins, antibodies, enzymes and nucleic acids; metabolic transformations of nutrients; bioenergetics; properties of biological membranes; primary mechanisms of preservation, transmission and translation into protein of the information contained in genes.The aim is also to provide the tools for students to be able to analyze and solve autonomously simple biochemistry issues.

Prerequisites

To deal with the topics of the “Biochemistry” course, students should possess a basic knowledge of Chemistry and Organic Chemistry.

Course unit content

Amino acids and proteins. Peptide bond. Primary, secondary, tertiary and quaternary structure of proteins. `Folding’ and 'unfolding' of proteins. Antibodies: structure and function. Structural proteins: collagen and keratin.
Actin, myosin and muscle contraction.
Mioglobin and hemoglobin.
Enzymes: mechanisms of action of enzymes and enzyme kinetics. Regulation and inhibitors.

Overview of Bioenergetics. “High energy” compounds. ∆G of individual exoergonic and endoergonic metabolism reactions. Exoergonic and endoergonic metabolic sequences.

Carbohydrate metabolism. Glycolysis.. Alcoholic and lactic acid fermentation. Glycogenolysis and glycogenosynthesis. Pyruvate dehydrogenase complex. Tricarboxylic acid (Krebs) cycle. Anaplerotic reactions: pyruvate carboxylase. Gluconeogenesis. Pentose cycle.

Lipids. classification and properties. Lipids with energy reserve function: absorbance and metabolism. Fatty acid beta-oxydation. Ketonic bodies and ketogenesis. Citrate transport system. Synthesis of saturated fatty acids.

Overview of amino acid metabolism. Role and mechanism of transaminase action. Degradation of amino acids. Correlation of amino acid metabolism with carbohydrate and lipid metabolism.
Respiratory chain and oxidative phosphorylation.

Overview of the preservation, expression and transmission of genic information. DNA as repository of gene information. DNA replication and transcription. Diversification of the function and role of ribosomal, transport and messenger RNA (r-RNA, t-RNA, m-RNA). The genetic code. Protein synthesis: translation. Mutations and repair mechanisms.

Full programme

- - -

Bibliography

BiochemistryMathews Van Holde Haren

Lehninger principles of biochemistry
Nelson Cox

Teaching methods

Oral lessons, with the use of multimedia tools.

Assessment methods and criteria

Written and oral exams

Other information

- - -