# PHYSICS LABORATORY 1 (UNIT 1)

## Learning outcomes of the course unit

This course aims to bring students to a level of knowledge of measurement methodologies that enable them to manage with autonomy simple laboratory experiments for the determination of mechanical quantities and calorimetry. Also aims to provide students with a basic knowledge of the theory of errors with elements of probability theory and stochastic variables.

At the end of the course the student will be able to: plan simple experiments of Physics, evaluate and treat the statistical and systematic errors of measurement. It will also have acquired a familiarity with the different methods of measurement and the ability to process and analyze statistically the results of measurements by means of suitable tools that help also their graphical representation, and summarize relations with the experiments themselves. The student will learn the basic concepts of probability theory, the key statistical distributions and their properties, the main statistical methods for data treatment.

## Prerequisites

Some basic concepts of math: algebra, trigonometry, analytic geometry, differential and integral calculus.

Some basic concepts in physics: kinematics and dynamics of material point, calorimetry.

## Course contents summary

Module I

1. Measurement and uncertainty

2. Error propagation and its representation

3. Statistical treatment of data and their representation

4. Gaussian distribution

5. Further elements of data analysis

6. Introduction to probability theory

7. Short account on Combinatorics

8. Short account on Calorimetry

The Laboratory experiments will cover:

• Basic measurements of physical quantities

• Free body fall

• Composition of Forces

• One-dimensional harmonic motion

• Motion of simple pendulum

• Bernoulli and Poisson distributions

• The adiabatic calorimeter

## Course contents

Module I

1. The measurement: direct and indirect measurements of physical quantities, units, characteristics and selection criteria of measuring instruments: accuracy, precision, promptness, dynamic range. Systematic and random errors, confidence intervals; orders of magnitude and significant figures.

2. Study of uncertainties in physical measurements: error propagation (sum, difference, product, quotient, the sum in quadrature, error as a function of one and two variables), error as differential. Measurement errors and their representation: confidence interval, significant digits, consistency / discrepancy between measurements, verification of physical laws.

3. Study of uncertainties in physical measurements: statistical treatment of data and their representation; statistical analysis of random errors: mean, variance and standard deviation, histograms and frequency distributions. Cumulative frequency. Short account on the treatment of systematic errors.

4. Study of uncertainties in physical measurements: frequency and probability, the limit distribution, probability density, normalization, mean value and standard deviation. Gaussian distribution: confidence and standard deviation, standard error integral; comparison of results. Mean as the best estimate. Population distributions.

5. Study of uncertainties in physical measurements: weighted averages, data rejection (Chauvenet criterion). Short account on the method of least squares and regression.

6. Introduction to probability theory: statistics and probability, discrete and continuous variables, the concept of event; favorable and possible cases, classical and frequentist definition of probability.

7. Combinatorics: simple distributions, distributions with repetition, simple permutations, permutations with identical objects, simple combinations, combinations with repetition. Lottery games.

8. Elements of calorimetry: definition of temperature, methods of temperature measurement, thermocouples, specific heat and heat capacity. Mechanisms of heat transfer, calorimeters, measurement of the specific heat.

The experiences in the Laboratory will cover:

• Basic measurements of physical quantities

• Free body fall

• Composition of Forces

• One-dimensional harmonic motion

• Motion of simple pendulum

• Bernoulli and Poisson distributions

• The adiabatic calorimeter

## Recommended readings

• J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books.

• Additional material provided by the lecturer.

## Teaching methods

Oral lesson and laboratory, alternated, with strong prevalence of laboratory activities.

Oral lectures will be used to furnish the physical basis of the experiments and to explain the theory of errors and measurements. The main part of the module is composed by six laboratory experiences, composed buy 8 hours each (2 afternoons). The laboratory activities will be carried on in small groups (4 students) to encourage the personal active participation.

PC will be used for the data acquisition and processing.

All the presentations will be available from the beginning on the Elly platform. The subscription to the course on Elly is mandatory to obtain access to files, forum, to upload the reports , to check the corrections and votes.

## Assessment methods and criteria

In Itinere evaluations plus final oral examination. The laboratory work is accounted for by written reports, one for each laboratory experiment. The corrected reports and their evaluation will be uploaded on Elly. In case of not positive evaluation during the course, a laboratory experience or suplementary written or oral tests could be required. The final vote of the module (0-30) is a combination of the in itinere evaluation (written reports, nearly 20-25%) and the oral examination (75-80%).

The final vote of the course will be the average of the evaluations of the two modules.

## Other informations

The course is split up into two periods: 6 CFU in the first semester and 6 CFU in the second semester. There is a single final exam at the end of the second semester.

Office hours: Wednesday, 10.30-11.30 or upon appointment.