APPLIED BIOLOGY
Learning outcomes of the course unit
The aim of this course is to give the student the ability to: (a) acquire the basic principles of biological sciences and methods. (b) learn and apply an evolutionary logic and perspective to interpreting the biological phenomena at different levels of organization (molecular, cellular, organismic); (c) understand the correlation between structure and function at the different organizational levels; (d) Acquire a basic knowledge of genetic principles; (e) Appraise the implication of human evolution for understanding human physiological and pathological responses.
Prerequisites
basic knowledge of physics, chemistry and biology.
Course contents summary
1. The Nature of science and biology: methods and organizing concepts. Diversity and unity of Life on Earth, emergent properties, correlation between structure and function, the Scientific method. The unifying principle of biology: The Theory of Evolution.
2. The chemical context of life: water and the structure and function of macromolecules. Origins and evolution of life on Earth.
3. Cell Biology. Procaryotic ed Eucaryotic cells. Membrane structure and function. Cell metabolism and energy trasformations. The reproduction of cells and cell cycle (binary scission and mitosis).
4. Sexual Riproduction. Meiosis and sexual life cycles. Oogenesis, Spermatogenesis and Hormonal regulation of reproduction in mammals. Evolution, consequences and adaptive significance of sexual reproduction. Parental Investment and sexual selection.
5. Genetics. - Mendel e the gene idea. Extension of mendelian genetics: the complex relationship between genotype and phenotype (incomplete dominance, multiple alleles, pleiotropy, epistasis, poligenic inheritance, nature vs nurture). The chromosomal basis of inheritance: Morgan’s experiments and chromosome maps. The chromosomal basis of ses and X-linked disorders. Human genetics: alterations of chromosome number or structure; recessively and dominantly inherited disorders. Genetic disorders in oral medicine. Multifactorial diseases.
6. The molecular basis of inheritance: DNA structure and replication. From gene to protein: Transcription, Translation and the genetic code. Point mutations. Regulation of gene expression in Procaryotic and eucaryotic cells. The Genome project.
7. Evolution. The Darwinian theory. Evidence from many fields validates the evolution theory. The modern evolutionary synthesis. The Hardy-Weinberg Theorem. Microevolution and its caueses. The origin of species. Macroevolution and Phylogeny. The evolutionary perspective in medicine: “Darwininan Medicine”.
8. Vertebrate diversity and phylogeny: an overview. Mammalian characteristics and Evolution of Primates. Jaws and teeth evolution.
9. Human Evolution.. Early Anthropoids, Australopitecines and the genus Homo. Evolution of brain and language. Evolution of the stomatognathic apparatus and diet in Ominids.
Course contents
1. The Nature of science and biology: methods and organizing concepts. Diversity and unity of Life on Earth, emergent properties, correlation between structure and function, the Scientific method. The unifying principle of biology: The Theory of Evolution.
2. The chemical context of life: water and the structure and function of macromolecules. Origins and evolution of life on Earth.
3. Cell Biology. Procaryotic ed Eucaryotic cells. Membrane structure and function. Cell metabolism and energy trasformations. The reproduction of cells and cell cycle (binary scission and mitosis).
4. Sexual Riproduction. Meiosis and sexual life cycles. Oogenesis, Spermatogenesis and Hormonal regulation of reproduction in mammals. Evolution, consequences and adaptive significance of sexual reproduction. Parental Investment and sexual selection.
5. Genetics. - Mendel e the gene idea. Extension of mendelian genetics: the complex relationship between genotype and phenotype (incomplete dominance, multiple alleles, pleiotropy, epistasis, poligenic inheritance, nature vs nurture). The chromosomal basis of inheritance: Morgan’s experiments and chromosome maps. The chromosomal basis of ses and X-linked disorders. Human genetics: alterations of chromosome number or structure; recessively and dominantly inherited disorders. Genetic disorders in oral medicine. Multifactorial diseases.
6. The molecular basis of inheritance: DNA structure and replication. From gene to protein: Transcription, Translation and the genetic code. Point mutations. Regulation of gene expression in Procaryotic and eucaryotic cells. The Genome project.
7. Evolution. The Darwinian theory. Evidence from many fields validates the evolution theory. The modern evolutionary synthesis. The Hardy-Weinberg Theorem. Microevolution and its caueses. The origin of species. Macroevolution and Phylogeny. The evolutionary perspective in medicine: “Darwininan Medicine”.
8. Vertebrate diversity and phylogeny: an overview. Mammalian characteristics and Evolution of Primates. Jaws and teeth evolution.
9. Human Evolution.. Early Anthropoids, Australopitecines and the genus Homo. Evolution of brain and language. Evolution of the stomatognathic apparatus and diet in Ominids.
Recommended readings
Campbell N., Reece et al. BIOLOGY. Pearson ed. 2009;
In alternative:
Purves et al., volumi vari, Zanichelli Ed. 2009;
oppure
SOLOMON et al. Fondamenti di Biologia. EDISES
Readings and resources - CD-Rom: Human Evolution;
Web-book: How humans evolved (http://www.wwnorton.com/college/anthro/bioanth/):
-Nesse RM, Williams G. Why we get sick.
- Matt Ridley. GENOME.
Teaching methods
classroom lectures
Assessment methods and criteria
- written exam
-oral exam
-power-point presentation
Other informations
additional course material on:
www.biol.unipr.it/%7epalanza