PHYSICAL METHODS
cod. 1000855

Academic year 2015/16
1° year of course - Second semester
Professor
Academic discipline
Fisica applicata (a beni culturali, ambientali, biologia e medicina) (FIS/07)
Field
Discipline matematiche, fisiche, informatiche e statistiche
Type of training activity
Basic
57 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in - - -

Learning objectives

The course aims at providing a basic understanding of physical processes and laws underlying the properties of matter. Laboratory experiments aim at providing some practical applications of the conceptual instruments highlighted in the class activity.

Prerequisites

Basic knowledge (high school level) of algebra, trigonometry and differential calculus

Course unit content

The course aims at providing:
the knowledge and understanding of the main principles of classical physics with focus on mechanics, thermodynamics, electricity and magnetism together with skills in solving simple problems

the methodologies needed to obtain quantitative data from simple experiments and to treat them using error theory.

Full programme

Class Lectures

Units, Dimensions & Errors, Vectors, Motion in one and two dimensions, Newton’s laws of motion, Friction, Circular motion.
Work, Energy & Power, Momentum, Collision, Centre of mass, Rotational mechanics Gravitation.
Simple Harmonic motion, Wave motion and Sound waves, Fluid mechanics.
Calorimetry, Heat Transfer, Kinetic theory of gases, Thermodynamics.
Electric Force, Field and Potential, Capacitors, Electric Current, Electric Circuits.
Magnetic Force and Field, Electromagnetic Induction, Alternating Currents.
Reflection at Plane and Spherical Surfaces, Refraction at Plane and Spherical Surfaces, Optical Instruments, Defects of Vision, Wave Nature of Light: diffraction and interference.

Laboratory activity

Introduction to error theory, error distribution: standard deviation & normal distribution, error propagation, linear regression & non-linear approximations, Chi-squared test.
Use of "Origin" software for data analysis.

ESPERIMENTS.
Mechanics: simple pendulum.
Thermodynamics: measure of the Joule equivalent.
Electromagnetism: Ohm’s law, RC circuit.

Bibliography

Mechanics, thermodynamics, electricity and magnetism:
J. W. Jewett Jr. & R. A. Serway - Principi di Fisica – EdiSES
alternatively:
J.S. Walker - Fondamenti di Fisica – Pearson Italia.
D.C. Giancoli - Fisica. Principi e applicazioni – CEA

Error theory and data treatment procedures:
J.R. Taylor - Introduzione all'analisi degli errori - Zanichelli

Teaching methods

Class lectures
Class exercises coordinated by an instructor
laboratory activity carried out in small groups (three-five students)

Assessment methods and criteria

The evaluation procedure takes place as follows:
- Evaluation of the laboratory activity (25%)
- Written test (35%)
- Oral examination (40%).
The written test requires the capability of solving simple exercises in mechanics, thermodynamics and electromagnetism.
For admission to the oral examination a minimum score of 15/30 is required in the written test. The written test must be passed in the same round of the oral examination.
The oral exam aims at evaluating in a quantitative way the knowledge of the main items that make up the syllabus: mechanics, thermodynamics, electromagnetism, elements of modern physics.
First year students can take part to three written tests during the course. If their average score is equal or greater than 18/30 (with a minimum of 14/30 for each test) they are exempted from the exam
written test.
The oral exam is compulsory for all the students.

Other information

Minimal contents needed to pass the exam.
- Newton’s laws and of conservation laws (momentum and energy) and capability of applying them in solving simple dynamical problems;
- Knowledge of zero principle , first and second principle of thermodynamics as well as of main state functions (internal energy, enthalpy and entropy) and capability of applying them in solving simple problems of equilibrium thermodynamics.
- Knowledge of Maxwell equations, of Ohm and Kirkhoff laws and capability of applying them in solving simple problems of electromagnetism.